Combining data from multiple inbred line crosses improves the power and resolution of quantitative trait loci mapping.

نویسندگان

  • Renhua Li
  • Malcolm A Lyons
  • Henning Wittenburg
  • Beverly Paigen
  • Gary A Churchill
چکیده

Rodent inbred line crosses are widely used to map genetic loci associated with complex traits. This approach has proven to be powerful for detecting quantitative trait loci (QTL); however, the resolution of QTL locations, typically approximately 20 cM, means that hundreds of genes are implicated as potential candidates. We describe analytical methods based on linear models to combine information available in two or more inbred line crosses. Our strategy is motivated by the hypothesis that common inbred strains of the laboratory mouse are derived from a limited ancestral gene pool and thus QTL detected in multiple crosses are likely to represent shared ancestral polymorphisms. We demonstrate that the combined-cross analysis can improve the power to detect weak QTL, can narrow support intervals for QTL regions, and can be used to separate multiple QTL that colocalize by chance. Moreover, combined-cross analysis can establish the allelic states of a QTL among a set of parental lines, thus providing critical information for narrowing QTL regions by haplotype analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A general mixture model approach for mapping quantitative trait loci from diverse cross designs involving multiple inbred lines.

Most current statistical methods developed for mapping quantitative trait loci (QTL) based on inbred line designs apply to crosses from two inbred lines. Analysis of QTL in these crosses is restricted by the parental genetic differences between lines. Crosses from multiple inbred lines or multiple families are common in plant and animal breeding programmes, and can be used to increase the effic...

متن کامل

A Statistical Variance Components Framework for Mapping Imprinted Quantitative Trait Locus in Experimental Crosses

Current methods for mapping imprinted quantitative trait locus iQTL with inbred line crosses assume fixed QTL effects. When an iQTL segregates in experimental line crosses, combining different line crosses with similar genetic background can improve the accuracy of iQTLs inference. In this article, we develop a general interval-based statistical variance components framework to map iQTLs underl...

متن کامل

Quantitative trait Loci association mapping by imputation of strain origins in multifounder crosses.

Although mapping quantitative traits in inbred strains is simpler than mapping the analogous traits in humans, classical inbred crosses suffer from reduced genetic diversity compared to experimental designs involving outbred animal populations. Multiple crosses, for example the Complex Trait Consortium's eight-way cross, circumvent these difficulties. However, complex mating schemes and systema...

متن کامل

Mapping Quantitative Trait Loci onto a Phylogenetic Tree

Despite advances in genetic mapping of quantitative traits and in phylogenetic comparative approaches, these two perspectives are rarely combined. The joint consideration of multiple crosses among related taxa (whether species or strains) not only allows more precise mapping of the genetic loci (called quantitative trait loci, QTL) that contribute to important quantitative traits, but also offe...

متن کامل

MAPfastR: Quantitative Trait Loci Mapping in Outbred Line Crosses

MAPfastR is a software package developed to analyze quantitative trait loci data from inbred and outbred line-crosses. The package includes a number of modules for fast and accurate quantitative trait loci analyses. It has been developed in the R language for fast and comprehensive analyses of large datasets. MAPfastR is freely available at: http://www.computationalgenetics.se/?page_id=7.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 169 3  شماره 

صفحات  -

تاریخ انتشار 2005